The volume of cardiac diagnostic procedures involving the use of ionizing radiation has increased rapidly in recent years. Whereas in 1990, fewer than 3 million nuclear cardiology studies were performed in the United States, by 2002 this figure more than tripled to 9.9 million. Cardiac computed tomographic (CT) volume doubled between 2002 and 2003, to 485 000 cases, and has continued to grow since then. The volume of procedures performed in cardiac catheterization labs increased from 2.45 million in 1993 to 3.85 million in 2002.

The powerful diagnostic and risk-stratification data provided by these procedures play a central role in clinical cardiology and have contributed to the decrease in morbidity and mortality from coronary heart disease. Nevertheless, performance of any diagnostic test requires a careful assessment of the risks and benefits of the test and optimization of protocols to minimize risks to patients, staff members, and the public. Procedures that utilize ionizing radiation should be performed in accordance with the As Low As Reasonably Achievable (ALARA) philosophy. Thus, physicians ordering and performing cardiac imaging should be very familiar with the dosage of radiation from cardiac diagnostic tests and ways in which dose can be minimized. In this report we discuss the measurement of radiation and the dosimetry of commonly performed cardiac diagnostic imaging tests, including nuclear scintigraphy, CT for calcium scoring and coronary angiography (CTCA), and conventional coronary angiography (CCA). For each modality, we address the terminology and methodology used to quantify radiation received by patients, doses to patients with typical protocols, and dose-reduction techniques.

Einstein et al, Circulation. 2007;116:1290-1305
Continue to: Circulation